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Learning Recursive Distributed
Representations for Holistic Computation
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A number of connectionist models capable of representing data with compositional
structure have recently appeared. These new models suggest the intriguing possibility of
performing holistic structure-sensitive computations with distributed representations.
Two possible forms of holistic inference, transformational inference and confluent
inference, are identified and compared. Transformational inference was successfully
demonstrated by Chalmers; however, the pure transformational approach does not
consider the eventual inference tasks during the process of learning its representations.
Confluent inference is introduced as a method for achieving a tight coupling between the
distributed representations of a problem and the solution for the given inference task while
the net is stll learning its representations. A dual-ported RAAM architecture based on
Pollack’s Recursive Auto-Associative Memory is implemented and demonstrated in the
domain of Natural Language translation.

KEYWORDS: Connectionism, holistic computation, structure-sensitive inference,
distributed representations, confluent inference.

1. Introduction

It is generally agreed upon that many cognitive tasks require the use of data
containing combinatorial constituent structure. Classical examples of such structure
include graphs, trees, and lists. The inability of most connectionist models to
represent or make use of such structure has hindered the application of these models
to higher level cognitive tasks and has been a source for attacks on the connectionist
enterprise (Fodor & Pylyshyn, 1988). However, recently several connectionist
models with the capability for representing structured data have been introduced
(Pollack, 1990; Elman, 1990b; Smolensky, 1990; Hinton, 1990, St John &
McClelland, 1990; Mikkulainen & Dyer, 1989; Lee er al., 1990). These models
usually map syntactic compositional structure into distributed representations by
using various composing and decomposing functional operations. Sharkey (1991)
gives a brief review of these new representational issues.

Lonnie Chrisman, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15217,
USA. E-mail: chrisman(ics.cmu.edu.



346 Lonnie Chrisman

The emergence of these new distributed representations for structured data
creates the possibility for a new and intriguing mode of computation: holistic
inference. This form of inference occurs in a gestalt fashion by deriving a solution to
the inference problem directly from a representation of structured data without
decomposing, locating, or accessing its constituent elements. The most interesting
case revolves around the type of distributed representation that (van Gelder, 1990)
characterizes as possessing functional compositionality without concatenative
compositionality—i.e. representations where the elements or relationships between
elements are not easily ascertained from the surface structure. Such holistic
inference is only feasible as a result of microstructure that emerges in the
representation. This microstructure may provide a means for the efficient comput-
ation of certain classes of inference such as the intuitive inference described by
(Hinton, 1990).

It is far from obvious that structure-sensitive holistic inference is even possible,
If a distributed representation is viewed as a complicated encryption of the original
data, then there is no reason to believe that such a representation would allow the
pertinent content to be accessible in the appropriate way. On the other hand, the
touted abilities of neural nets to capture relevant regularities in data may instead
cause-these regularities to be directly reflected in the resulting microstructure of the
representations, thus opening the doors to a new realm of inference, the essence of
which would be radically different from most people’s conceptions of how
computation must be performed.

Chalmers’ fascinating experiment (Chalmers, 1990) gives the first positive
indication that such structure-sensitive holistic inference is, in fact, possible.
Distributed representations were derived for a corpus of sentences using Pollack’s
Recursive Auto-Associative Memory (RAAM) architecture. A simple transform-
ation network was successfully trained to perform sentence passifization (i.e.
converting a sentence such as ‘John loves Michael’ from the active into the passive,
‘Michael is loved by John’) by mapping directly from distributed representation to
distributed representation. On a corpus of 75 active—passive training pairs and a
different set of 75 active—passive testing pairs, the transformation network achieved
an impressive 100% accuracy, thus giving an existence proof for structure-sensitive
holistic computation.

The use of pure transformational inference, as employed by Chalmers, imposes a
separation between the learning of representations and the training of the network
that performs an inference. This prevents a system from tuning its representations
for a particular set of inference tasks. When inference tasks are known in advance, it
may instead be preferable to account for the inference tasks while learning
representations, so that the information most relevant to the inference will be more
likely to be accessible within the resulting distributed representation.

This paper introduces a method, confluent inference, that removes the separation
between learning representations and training on the inference task. The method
attempts to simultaneously embed encodings for both the input and output of an
inference task within a single representation of the input. This encourages the
confluence of the representations by causing commonalities with the output to be
easily accessible from a representation of the input problem. For example, in
experiments reported in this paper, a confluent inference training process learns
representations for English and Spanish sentences. When the sentence ‘He does not
want it’ is encoded, a distributed representation is obtained that encodes both this
sentence and its Spanish translation (‘No lo quiere’). Rather than only representing
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the syntactic input in an alternative form, the confluent representation encodes
something closer to the content of the input problem, in this case an interlingua-like
representation.

While confluent inference should properly be viewed as part of the representation
learning process, in the extreme it is a novel form of structure-sensitive holistic
inference that can accomplish the entire inference task by itself. As a representation-
forming mechanism, confluent inference can act synergistically with transform-
ational inference. To explore the abilities of the pure confluent approach, a dual-
ported RAAM architecture was devised and implemented and applied to a small
English—Spanish translation domain.

This paper begins by reviewing the basic RAAM architecture (Pollack, 1990).
The two types of holistic computation, transformational and confluent, are then
presented in detail and compared. Next, the dual-ported RAAM and the associated
training technique are developed, and experimental results from applying the
architecture to a natural language translation task are given. This is followed with a
discussion of the characteristics that allow confluent inference to be effective, and a
comparison with interlingua representation. Finally, methods are presented for
synergistically combining confluent and transformational inference.

2. RAAM

Pollack’s Recursive Auto-Associate Memory (RAAM) architecture allows variable-
sized structured data to be represented using a fixed-sized network (Pollack, 1990).
The basic RAAM can encode arbitrary tree structures of variable depth as long as the
valence (branching factor) is bounded. There is no hard limit upon the maximum
depth of any branch, nor is there any specific upper bound on the number of distinct
trees that can be stored. In practice, however, the maximal depth and number of trees
that can be stored and retrieved accurately depends upon the network’s capacity, as
determined by its size. When representing an arbitrary tree, the basic RAAM
requires that the number of units used to represent a terminal element be equal to the
number of hidden units used to represent a complete data structure. In the special
case of a list, this restriction can be lifted and the resulting configuration is called a
Sequential RAAM. For simplicity, the description here will be limited to the
Sequential RAAM; however, all methods discussed in this paper generalize
straightforwardly to the basic RAAM.

The encoding and decoding of a list can be accomplished using the recursive
configuration shown in Figure 1. After training is complete, a list can be encoded by
placing a local representation for the first list element on the left-hand L units of the
input, and an empry or nil vector on the right-hand K units. This produces a
distributed representation for a list of one element on the K hidden units. The
activations of the K hidden units are then copied to the rightmost K units of the input
and the second element is placed on the left-hand L units, producing a representation
on the K hidden units for the two-element list. The process is continued until the
entire list is encoded.

A list can be decoded by placing its distributed representation directly on the
hidden units. The leftmost L units of the output return the last element of the list,
while the rightmost K units return the representation for the remainder of the list.
The decoding process can be repeated until the end of the list is detected, such as by
including a special stop element at the beginning of the list.
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Figure 1. The sequential RAAM structure.

The network is trained to auto-associate the desired inputs by using the back-
propagation procedure. A list element, along with the encoding of the proceeding
portion of the list, is placed on the input units and the network is trained to reproduce
the same pattern on the output units. In the process, the network is forced to develop
a compressed representation on the hidden units. The hidden activations are
extracted, used to encode longer lists, and back-propagation is repeatedly applied
until the end of the list is reached. As the network learns, the hidden unit encoding
changes, and a form of moving target learning emerges.

After this process is carried to completion, we are left with both an encoding
process and a decoding process since the output layer of the net can be used to decode
a list, as described earlier.

3. Holistic Computation

The RAAM architecture described in the previous section can be viewed simply as a
distributed memory for storing compositional data structures. Viewed in this way,
computation proceeds by locating, extracting, and combining constituent elements
of the encoded structures in a manner not much different from traditional symbolic
processing. None the less, various emergent properties of distributed represent-
ations (Hinton et al., 1986) and of the RAAM architecture (such as high encoding
efficiencies, fault tolerance, or the tendency to make mistakes gracefully) may make
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this view of structure-storing connectionist models interesting in their own right.
The best example of such use is BoltzCONS (Touretzky, 1990).

Beyond being a mere structure-storage device, a RAAM’s representations
suggest that much more may be possible (Sharkey, 1991). In order to compress
arbitrary data structures down to a fixed-width hidden layer, the RAAM must make
use of regularities, and these regularities may become reflected directly in the
distributed representations. The representations encode the compositional structure
of the original data structure as well as additional statistically based information
about these regularitics. Highly efficient computation that takes advantage of this
otherwise unavailable information might use the distributed representations direct-
ly. In the terminology of van Gelder (1990), the distributed representations learned
by a RAAM are functionally compositional without concatenation, so that individual
elements of a data structure, and relationships between elements, are not usually
directly reflected in the resulting representation. Inferences that use a representation
directly without accessing its compositional structure are said to perform holistic
inference.

3.1. Transformational Inference

Let x represent a given item of structured data. The encoding process of a RAAM
maps xeX to a distributed representation denoted by E(x)eR. Similarly, the
decoding process maps a representation re R to a data structure denoted by D{(r)e X.
When D(E(x))=x, we say the network is capable of auto-associating (i.e. represent-
ing) x. Recall that the computation of E(-) or D(-) by a RAAM requires multiple
encoding or decoding steps.

We can view a given inference task as computing a function f: X— Y, where
elements of X and Y are structured data. For example, X may be the set of all English
language sentences, Y the set of all Spanish sentences, and f(-) the translation
function that converts any sentence from English to Spanish.

When {E(-), D(-)» exhibits functional compositionality without concatenative
composttionality, and when D(g(E(x)))= f(x), then g(-) performs a transformational
holistic computarion of f(-). The process of computing f(x) in this fashion is called
transformational holistic inference and is shown schematically in Figure 2(a). This
characterizes the techniques employed in Chalmers (1990) and the syntactic
transformation experiments of Blank et al. (1992). For example, Chalmers trained a

f(x) X f(x)

D TD ID
Distributed g Distributed Distributed Distributed
Encoding of Encoding of Encoding of Encoding of

bt f(x) X f(x)

E IE ]E

X X f(x)

(a) (b)

Figure 2. (a) The transformational holistic computation of f(x) by g(-). (b) Usually
the auto-association of x and f(x) is used to learn representations before learning the
transformation g(+).
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RAAM to auto-associate parse trees of active and passive English language
sentences. After this training process had converged, the hidden layer of the RAAM
vielded distributed representations for each of the sentences, with connection
weights providing the E(-) and D(-) mappings. Chalmers then trained another feed-
forward network, g(-), to transform the resulting distributed representations of
active sentences into the distributed representations of their passive counterparts.
By encoding an active sentence, passing it through the feed-forward transformation
network, and then decoding it, the system generates the corresponding passive
sentence.

Because of the opacity of the representations used during holistic inference, the
functions E('), D(-), and g(-) must all be learned through training. To date, the
representations (i.e. E(-) and D(-)) have been learned first, as shown in Figure 2(b).
The transformational mapping g(-) is learned only after the representations have
been completely determined. Note that with transformation inference, the repres-
entations develop independently from the inference task(s), preventing the system
from tuning its representations for a given set of inference tasks. From a cognitive-
science perspective, this is unsatisfying since representations are seldom learned
independently of any task. This makes pure auto-association unrealistic as a model of
representation-learning processes. None the less, when tasks come along later after
representations are learned, transformational inference seems particularly
important.

3.2. Confluent Inference

Confluent inference provides one technique to account for the eventual inference
tasks while learning recursive-distributed representations. The resulting represent-
ations are biased to deal with the tasks for which they were learned (cf. Miikkulainen
& Dyer, 1988, 1989; St John & McClelland, 1990). This technique attempts to strike
a compromise between the ease of the desired inferences and the necessary auto-
associative capabilities.

Confluent inference causes the distinctions that are important for the given
inference task to become readily accessible within the microfeatures of the
distributed representation. These distinctions are not necessarily interpretable to a
human examining the representations, but they emerge so that the given inference
task can be performed easily. Although confluence should be viewed as a mechanism
for tailoring representations, confluent inference can be used to perform the entire
inference task by itself. The FGREP algorithm (Miikkulainen & Dyer, 1988) can be
viewed in this way. In order to obtain a better understanding of confluence, the
discussion and experiments focus upon the use of pure confluent inference. In a later
section, the possibilities for composite configurations are considered, where
confluence is used to shape the representations, and transformational inference is
synergistically employed for the inference task.

If x is an input to an inference task, and f(x) is the desired output, then confluent
inference attempts to simultaneously encode both x and f(x) within the represent-
ation for x. Empirically this has been observed to result in a confluence (i.e. ‘coming
together’) of the representation for x with the representation for f(x). By closely
associating x and f(x) in this manner, the representation for x becomes tuned for the
inference task.

Taken to an extreme, confluent inference suggests that a problem, x, and its
answer, f(x), should have identical representations. The key insight is that a given
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representation may have two different interpretations (i.e. decodings), one corre-
sponding to the initial problem, the other to the answer of the inference task. The
encoding is viewed as representing a bundle of information rather than solely an
encoding of the syntactic input, and inference is performed by selecting a special
decoder to extract the information needed to form the answer. For the
English«Spanish task considered later, the representation may be considered to be
analogous to idea of interlingua used by the Machine Translation community. One
decoder maps the interlingua into English and a different decoder maps it into
Spanish. The relationships between confluent and interlingual representations are
discussed later in the paper.

For clarity, the inferences under consideration in this paper will be limited
to one-to-one functions; however, the confluence technique may similarly be
applied to general N-to-1 functions as described in Chrisman (1991). When
confluent inference is used to learn a one-to-one function, (), the inverse mapping,
f (), can be acquired simultaneously.

To operationalize the confluence technique, additional encoding and decoding
processes are employed. As a result, the interpretation of a particular representation
depends upon which encoding or decoding is utilized. Let R represent the set of all
possible (distributed) representations, and let X and Y be the domain and range of
f(-)respectively. Let E;: X— R and D;: R— X be an encoding and decoding pair for
representing the input x to the inference task,and let E,: YR and D,: R—»Y bea
second pair for representing the output f(x) within the same space of represent-
ations. We say that the network auto-associates x and f(x) when D, (E,(x))=x and
D,(E,(f(x)))=f(x)as shown in Figure 3(a). This network is capable of representing
both x and f(x). When D,(E,(x))=f(x)as in Figure 3(b), f(x) is said to be computed
by confluent inference.

Although D,(-) and E,(-) are not activated during the computation of f(x) in
Figure 3(b), they none the less play a critical role during the process of learning
representations. The key point is that both x and f(x) are combinatorial data
structures with embedded constituent structure. Even if auto-association is not
required by a system, the auto-associative pathways are necessary for performing the
required recursive processing to build representations of whole structures from the
constituent parts. Since E,(-) and D,(') must be trained anyway, they provide a
convenient method for obtaining the inverse function f ~'(y) as D,(E,(y)), where

y=f(x).

f(x)

Representation
r

Auto-association of x
Muto-association of (1)

By

¥ 10)
(a) (b)
Figure 3. (a) Two-way auto-association. (b) The computation of f(x) by confluent
inference.
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It should be emphasized that (E,(-),D,(+)) and {E,(-),D,(-)) are always
distinct networks, even when the domain X and range Y of f(-) use the same
alphabet, as was the case in Chalmers’ sentence passivation task. This is a very
different approach than with transformation inference, for it views a representation
as a bundle of information about the content of a given problem, as opposed to
viewing it simply as a syntactic encoding of the input. For sentence passivation,
once a sentence is encoded, D,(-) can be used to extract the active sentence
interpretation, while D,(-) extracts the passive one.

4., The Dual-ported RAAM

The dual-ported RAAM architecture of Figure 4 was developed and implemented in
order to conduct experiments with confluent inference. The experiments conducted
thus far have been designed to test the abilities of pure confluent inference without a
composite transformational component.

Given a data structure x to encode, Encoder; of Figure 4 is used to compute the
representation E,(x) using the same encoding procedure as for the basic RAAM
architecture. Similarly, a representation for f(x) is obtained by using this same
procedure with Encoder,. The basic (multiple-cycle) RAAM decoding process is
used to convert a distributed representation into data structures representing x and
f(x) by using Decoder, and Decoder, respectively. Note that the implementation of
the encoding and decoding functions E;(-) and D(-) involve multiple execution
cycles.

The back-propagation procedure is employed to train the dual-ported RAAM.
As with the basic RAAM, the encoder-decoder pairs must be trained to auto-
associate all lists and sublists, but in addition, the constraint of confluence
association requires the resulting representation r to decode as D,(r)=x and
D,(r)=f(x). In order to specify this process, it is necessary to distinguish between
single encoding or decoding steps and the net result of encoding or decoding. Let
r, = Encode,({a,r,'"')) represent the activations that appear on the hidden units

Outputs

FeLy units s—te—K units —=l —={Lpunits te—K units —+
s]e]s]e]n s]e] [=]s a]a s ssTala) (s]e]e]el [s]o]e]s]s s sTaTe]

Decoder 1 Decoder o

Hidden Units=

Representation _sR=ooo0000)

[elels]els s]e] [s]e]e]a]s alaa]s] [COC0 [000000000)
b=Ly units s~le—K units —»l —=iLounits te— K units —=4

Inputs
Figure 4. The dual-ported RAAM architecture.
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in Figure 4 when ¢a,r,'” ') is placed on Encoder,’s input. Let Decode,(r;)=<b,r
be the activations on the output units when r; is placed on the hidden units. Similar
notation is used for Encode,(-) and Decode,(-). Consider here a function f(x) that
accepts a list x=(x,, X5, ...,X,) as input and produces a list FO)=(F15f25--sfm) a8
output. One epoch of the training process is as follows.

Given: x=(X,%35.--5%) f(O)=(f1s 252 fm)
1. let rd=r=empry.
2. fori=1...(n—1) do ;5 Auto-association

(a) put {x,r, !> on input to Encoder,.

(b) propagate activations through Encoder, to obtain the activations on the
hidden units. Denote this as r,".

(c) propagate activations from the hidden units through Decoder, to the outputs.

(d) invoke back-propagation on the three-layer Encoder,—Decoder, network
using {x;,r,' ') as the ideal output.

3. Repeat step 2 on the Encoder,—Decoder, networks for i=1,...,(m—1) with

representations r,’.

4. Enforce the confluence association of x as follows:

(a) put {x,,r,"" ') on the input of Encoder,.

(b) propagate activations through Encoder, to hidden units to obtain r,".

(c) propagate activations from the hidden units through both Decoder, and
Decoder,.

(d) invoke back-propagation using Decoder,uDecoder, as the output layer,
Encoder, asthe input layer, and (x,,r," "' Y@ {f,,, ;" ') as the target output.

5. Enforce the confluence association of f(x) as follows:

(@) put {f,,r," ') on the input of Encoder,.

(b) propagate activations through Encoder, to hidden units to obtain r,™.

(c) propagate activations from the hidden units through both Decoder, and
Decoder,.

(d) invoke back-propagation using Decoder,\wDecoder, as the output layer,
Encoder, as the input layer, and {x,,r" '>®{fr,™ '> as the target
output. ‘

6. Repeat all steps above for each training pair x, f(x).

The algorithm assumes a one-to-one function so that the network is trained to
produce D, (E,(f(x)))=x as well as D,(E,(x)) = f(x). The critical point is that auto-
association is required for all sublists (as with the basic RAAM), but confluent
association is only required for the complete list.

The training process for the English to Spanish translation task is shown
pictorially in Figure 5. For a step in the RAAM encoding process that encodes an
uncompleted sentence, the normal RAAM configuration shown in Figure 5(a) is
used. The words marked by the ¢ and ) symbols signify that the corresponding
distributed representation for that subsentence appears or is inserted in the
designated location. Confluence is introduced by modifying the final step of the
encoding process as shown in Figure 5(b). The final step requires the complete
encoding in order to decode into both English and Spanish through Decoder, and
Decoder, respectively. In the figure, the encoding for ‘(No tenemos)’ must be
obtained by using Encoder, just prior to performing this final step. Although the
system only makes the problem-answer association at the final encoding step, over
multiple epochs the ‘moving target’ learning of the RAAM affects the represent-
ations chosen for the encodings of earlier sentence fragments.
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Figure 5. Training of the dual-ported RAAM. (a) The basic sequential RAAM
configuration is used to auto-associate all incomplete subsentences. (b) For the
completed sentence, the system is required to produce both the auto-associated
output as well as the translation (or in general, the answer to the desired inference).
Back-propagation is used at each step with the appropriate network configuration.

This process of associating problems with their answers only on the final step
(similarly to the ‘classification paradigm’ used by Pollack (1991)) can be contrasted
with the predictive paradigm used by Servan-Schreiber ez al., (1988); Elman (1990a);
St John & McClelland (1990); Miikkulainen & Dyer (1989, 1990); and Lee et al.,
(1990). In the predictive counterpart, a configuration similar to Figure 5(b) would
consistently be employed for each subsentence. Upon seeing the first word of the
sentence (“We”), back-propagation would use the complete answer (*hambre’—
‘{No tenemos)’ as the target output for the second decoding pathway, while
Decoder, would continue to be used as an auto-associative pathway.

Although the training process has been described in terms of lists, the dual-
ported RAAM is equally applicable to any structures that can be encoded by a
RAAM. For a fixed-valence tree, step 2 is applied to all non-root nodes, and step 4 is
applied to the root node. When the system uses the same representations for multiple
inference tasks (cf. Miikkulainen & Dyer, 1989), Figure 4 can be easily generalized to
a multi-ported RAAM architecture with all inference tasks influencing the resulting
representations (Chrisman, 1991).

5. Natural Language Translation Task

To test the feasibility of pure confluent inference, a dual-ported RAAM was
implemented and applied to a small English—>Spanish translation task. A back-
propagation network was also previously applied by Allen (1987) to a small English
to Spanish translation task using a multilayer feed-forward network. Unlike the
structure-sensitive encodings learned by RAAMs, Allen restricted the maximum
sentence length so that all words could simultaneously be applied at the input and
output layers. The translation task provides an interesting domain for experimenting
with structure-sensitive holistic inference. It is a domain where pure transform-
ational holistic inference is non-trivial since the regularities and vocabulary in each
language are distinct. When both English and Spanish sentences are auto-associated
by a pure RAAM, it is possible that this distinctness may cause the RAAM to
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develop unrelated encoding schemes for each language, making a holistic transform-
ation very difficult. In fact, Allen (1987) reports encountering this phenomenon. He
trained two feed-forward auto-associating networks to develop hidden-unit repres-
entation of sentences in each language, and then trained a network to transform from
the English net’s hidden representation to the Spanish net’s representation. His
‘preliminary’ results indicated that “apparently the types of features extracted in the
two auto-associator networks are not easily coordinated’.! However, by using
confluent inference, the dual-ported RAAM develops closely related encoding
schemes for the two languages.

A corpus of 216 possible English—Spanish sentence pairs (i.e. 432 total sentences)
were enumerated from a vocabulary of 36 English and 36 Spanish words. These
words and their (localist) encodings are given in the Appendix. The encoding scheme
was quickly chosen, based only upon a subjective feel for the style of representation
used by Pollack (1990) and Chalmers (1990), with no additional time expended on
any clever engineering of the patterns. A number of interesting surface phenomena
occur in these sentence pairs, making the translation task non-trivial. The number of
words and the word ordering commonly differ.

® He has it.—Lo tiene. (‘It he_has")
e We do not want it.—No lo queremos. (“Not it we_want’)

There are distinctions made in each language not made by the other. For example, in
the following sentences, the English word ‘is’ maps to three different verbs in
Spanish.

e He is a student.«—+Es estudiante.
e He is happy.—Esta contento.
e He is hungry.—Tiene hambre.

Similarly, the Spanish verb ‘tener’ can map to different English verbs:

e Tienen razon.—They are right.
e Tienen dinero.«+They have money.

The verb conjugations between the two languages are not identical. For example, in
Spanish the following conjugations are the same while in English the conjugations
differ (‘are’ vs “is’):

e You are young.—Usted es joven.

e Lonnie is young.«+Lonnie es joven.

Also, different Spanish conjugations exist for the English conjugation ‘are’:

e You are here.«—+Usted esta aqui.
® We are here.—Estamos aqui.
e They are here.«—~Estan aqui.

These surface phenomena make the task particularly ill-suited for word-for-word
translation. Since the set of sentences seem to require a semantic association rather
than a purely syntactic association, the emergent representational microstructure
should reflect information beyond simple compositional structure.

The first experiment was designed to test memorization capabilities and measure
the extent to which confluence is achieved, with no consideration of generalization
proficiency over unseen sentences. All 216 sentence pairs were used for training. The
number of hidden units was K=40, and L,=22, L,=19 yielding a network
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topology? of (62@59)-40-(62@59). The learning rate r began at r=0.1, but was
decreased to r = 0.01 near the end of training. The momentum m began atm=0.3 but
was quickly increased to m=0.9, and eventually increased to m=0.97 near the end of
training. A terminal tolerance of t=0.2 and a non-terminal tolerance of v=0.05 were
used. After 5200 epochs all 432 sentences and sentence translations were successfully
memorized, with nine words being only ‘weakly’ learned wherein at least one bit in
the word had an activation between 0.2 and 0.8.

If confluence is taking place during training, then the internal distributed
representations for equivalent Spanish and English sentences should be very closely
related. An examination of the resulting representations verified that this is the case.
The resulting distributed representations for a small sampling of the sentences is
shown in Figure 6. For the entire corpus of sentences, it is clear that the
representational confluence is pronounced. In fact, in 99% of the sentences
(427/432), the Euclidian distance between the representation for a sentence and the
representation for its translated sentence is smaller than the distance between the
sentence and any other sentence in the corpus.

An interesting exercise is to determine whether any hidden unit consistently
responds to particular identifiable semantic or structural features (Hinton, 1986). It
seems reasonable, for example, that a unit might dedicate itself to representing
sentence polarity (e.g. ‘I have it’ vs ‘I do not have it’). Other units may dedicate
themselves to capturing the particular subject or verb of the sentence, etc. However,
as with FGREP representations (Miikkulainen & Dyer, 1988, 1990), these sorts of
clear, unambiguously interpretable microfeatures did not occur. Identifiable micro-
features seem to occur only mildly over small groups of closely related sentences, but
not at all consistently over the entire training set. For example, the sixth unit from
the left consistently encoded whether the sentence was negative when the verb of the
English sentence was ‘to want’ (querer) or ‘to have’ (tener), but did not correlate at all
with sentence polarity in any of the other sentences. Many other units were even
more opaque. The sentence structure and content appear to be truly distributed
within the representation.

The second experiment tested generalization. The sentence pairs were randomly
partitioned into two equally sized groups, and one group (of 108 sentence pairs) was
used for training. A stop marker (all bits assigned an activation of 1.0) was prepended

I am sleepy |-MeM-M-W- - -+« [T | R N -EE o H-N
Tengo sueno -A-E-m-W- - 1 | ] [ RN LR ] | HE-H
I am not sleepy -A-E-H-H- -H-- ] ] | -H-Nn +H- -l
No tengo sueno ‘H-E-m-m-N-- [ | | [ R RN | R |
He is sleepy ‘A-E-m-| u mEl- - ull- -EENEN- -H-N
Tiene sueno -a-E-m-|m- - N - -EEN:---NH -H--- -EAEN-EE-B
He is not sleepy ‘H-EH-B-H- -0 -A-H-@---»:: 0. -H-HE---HER
No tiene sueno ('HE-B-N B RO co-ml
You are angry -EN- - - -1 -H-0-
listed esta furioso Al - - -0 -l
You are not angry -El- - - - l-
Usted no esta furioso -El- - B -
They do not have money |- - - HEER voa s vl 0 KN ERCI
No tienen dinero o -HENE- - c-m -0 il GREE R
They are professors -HEN- -@ul- - - - L -0 -AN-uE-
Son profesores ANN- -EEN - - - - - - HN:- - En-EEE-5- N BEEEN-
We lave it -@---AEH-ER----0---A-A---0---WW: -
Lo tenewmos c--f---n-H-ER: -0 -H-HN: ;- -EH-: -0 -

Figure 6. Distributed representations obtained during experiment 1.
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to each of the training sentences, and simply treated as an additional word during the
training process. A learning rate of r=0.1 was used throughout. The momentum was
set at m=10.3 for the first 100 epoches, and m=0.9 for all remaining epochs. After
3300 epochs, all 108 sentences in the training set and their translations were
successfully memorized, with four words being ‘weakly’ learned. (These bits had
activations within 7 =0.3 of the correct value.) The remaining 108 sentence pairs
(216 sentences) were then used for testing the generalization accuracy of the system.
Each sentence was decoded until the stop marker was produced, and was compared
against the correct reproduction. The generalization accuracy is divided into two
parts, the auto-associative accuracy (i.e. the ability to encode and decode a sentence
to obtain the original sentence) and the translational accuracy (i.e. the ability to
correctly translate a sentence into the other language). The trained network correctly
auto-associated 89% (192/216) and correctly translated 75% (161/216=285/108
English— Spanish and 76/108 Spanish—English) of the testing sentences. For these
figures, only the sentences that were reproduced exactly were counted as correct. Of
the incorrect sentences, 87% (21/24 and 48/55 respectively) were almost correct,
differing either by a single erroneous word or an incorrect subject with a consistent
verb conjugation.

While 25% of the testing sentences were translated incorrectly in the previous
experiment, roughly half this many (10%) were unsuccessfully auto-associated.
This suggests that a considerable hindrance to the translational accuracy is not
confluent inference, but rather the ability of the RAAM to auto-associate (i.e.
represent) the sentences. Chalmers (1990) also found that errors due to the RAAM’s
mistakes in generalizing its representations to unseen sentences dominated the
accuracy of his experiments. To isolate the two phenomena, he trained to a net auto-
associate all possible sentences. An analogous experiment follows.

The third experiment was designed to test the generalization capabilities of
confluent inference while factoring out the effects of incorrect auto-associative
generalization by the RAAM. For this experiment, the confluent training process,
shown earlier in Section 4, was used for the first 108 sentence pairs. Pollack’s
standard RAAM training scheme was applied to the other 108 sentence pairs by
independently using the English sentence to train the Encoder ,—Decoder, pair and
the Spanish sentence to train the Encoder,—Decoder, pair. After 3500 training epochs
(using the same learning parameters as the previous experiment), the network had
perfectly memorized all 432 auto-associations as well as the 216 translations from the
training set. The remaining 108 sentence pairs were then used to test the
generalization accuracy of translation. The system translated 89% (191/216
=96/108 English— Spanish and 95/108 Spanish— English) of the sentences per-
fectly. Of the mistakes, 60% (15/25) could be considered near misses, differing by
only one incorrect word or by an incorrect subject with the verb agreeing in
conjugation. All of these sentences can properly be auto-associated by the system;
therefore, these numbers reflect the true accuracy of the confluent inference process
for this translation task. Since associational abilities give holistic inference its
intriguing potential, the mistakes made by holistic inference engines are sometimes
more interesting than the success rates obtained. Table I shows all testing sentences
that were incorrectly translated by the network in this third experiment.

A fourth experiment was performed in order to obtain a basis for comparison
with transformational inference. Two RAAM networks, one for English and one for
Spanish, were trained to auto-associate the entire corpus of 216 sentences in each
language using network topologies of 62-40-62 and 59-40-59 respectively. Both
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Table 1. Incorrectly generalized translations in the third experiment

Testing sentence

Erroneous translation

Correct answer

Lo tengo I want it * I have it

No lo tengo I do net want 2t + I do not have it

I am not a professor No son estudiante + No soy profesor

I am not a student No son estudiante + No soy estudiante

I am not from California Mo soy de Pittsburgh * No soy de California

Tiene dinero He is sleepy * He has money

Es de Pittsburgh He are from Pittsburgh He is from Pittsburgh

He is not from Pittsburgh No es de California * No es de Pittsburgh

No es de Pittsburgh Professors happy is not from He is not from Pittsburgh
Pittsburgh

Lonnie is from Pittsburgh Lonnie es de California + Lonnie es de Pittsburgh

Usted no lo quiere You dees not want it You do not want it

Usted tiene dinero You have they You have money

You are a professor Usted tiene guiere profesor Usted es profesor

Usted es profesor Lonnte do a professor You are a professor

You are a student Usted tiene guiere estudiante Usted es estudiante

Usted es estudiante Lonnie do a student You are a student

You are not a student Usted no téene estudiante Usted no es estudiante

Usted no es de California Lonnte student not from You are not from California
California

You are not from Pittsburgh Lonnie no es de Pittsburgh x Usted no es de Pittsburgh

Usted no es de Pittsburgh Professor Lonmnie happy not You are not from Pittsburgh
from Pittsburgh

They do not have it No lo tenemos * No lo tienen

Tienen dinero They are young + They have money

We want it Lo quieren * Lo queremos

Tenemos dinero We are money We have money

We do not have money Mo ttene dinero ® No tenemos dinero

Words in italics were only weakly activated with at least one output unit between 0.2 and 0.8. Asterisks
indicate responses in the main training set and plus signs those which appeared in the auto-association set.

networks were fully trained in 500 epochs using m=0.9 and r=0.1. Next, the same
108 sentence pairs used in Experiment 3 for confluent inference training were used to
train a transformation network to convert from the English representation of a
sentence into the Spanish representation. Using the Spanish RAAM, this represent-
ation was then recursively decoded until a stop marker was obtained, and the
decoded sentence was compared with the actual translation. Training began with
m=0.3 and r=0.1, with the momentum increased to m=0.9 after 100 epochs.
Achieving 100% accuracy on the training set was difficult, with little noticeable
improvement after 3000 epochs, even when the learning rate was decreased to
r=0.02 and the momentum increased to m=0.95. Training was stopped after 20 000
epochs, at which point the network was able to reproduce all of the training
sentences, with 16 of the reproduced words containing ‘weak’ bits with activations
between 0.2 and 0.8. Generalization was then tested on the remaining 108 sentence
pairs. The network successfully translated 71% (77/108) of the English sentences
perfectly (as compared with 89% by confluent inference in experiment 3). Of the
incorrectly translated sentences, 94% (29/31) could be considered almost correct,
differing only by a single word or by an incorrect subject with a matching verb
conjugation. Since the network topologies, training set, and testing sets were
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identical in the third and fourth experiments, this seems to be the most meaningful
experimental comparison possible. Confluent inference achieved slightly better than
half the translation error rate; however, this single experimental comparison should
not be taken as a representative ratio of performance for natural language translation
tasks overall since the sentence corpus is relatively small and possibly not
representative of more realistic translation tasks.

6. Why Confluence Works

Confluent inference attempts to achieve a close association between the input and
output pairs of an inference task by causing the association to be overtly reflected in
the respective representations. The association has empirically been observed to
appear in the form of very similar representations for a problem and its answer,
To determine the appropriate scope for the confluent technique, it is necessary to
understand when the confluence of the two representations is likely to occur.

The confluence technique attempts to summarize the input and output data
structures in terms of a common set of microfeatures. Because the data structures
may be an arbitrary size and shape, and the microfeatures are limited to a fixed
number of units, a compression must take place. In order for this compression to be
effective, the system should not simply partition the units into input microfeatures
and output microfeatures; instead, units must be shared between both input and
output. These units can be viewed as extracting common semantic gestalt properties
from either source. Furthermore, since a certain aspect of an inference task may
depend upon the ‘whole’ of the input rather than just an individual constituent, there
is additional pressure to combine the representations in the form of common
microfeatures. If this were not the case, then during encoding, those units
partitioned as output representations would have to be filled in through a
complicated inferential process which is not immediately related to individual
constituents of the input structure.

From these considerations, we can conclude that the success of confluent
influence rests upon the presence of deep semantic and/or syntactic commonalities
between an input problem and its answer. It is these commonalities in high-level or
‘deep’ meaning that confluent inference attempts to bring into the representations.
When significant overlap in higher-level meaning does not occur, then confluent
inference will probably not contribute to the computation. When only a partial
overlap occurs, confluent inference may be useful for leveraging that overlap, while
transformational inference may be more appropriate for the remainder of the task.
Composite approaches are considered in a later section. One should also always keep
in mind that holistic computation, in whatever form, may not be appropriate for
many tasks (cf. ‘intuitive’ vs ‘rational’ inference (Hinton, 1990)). >

6.1. Portability

In many systems, it is likely that new inference tasks may come along after the system
has learned its representations. In these cases it may be appropriate to train for the
new inference tasks without altering representations. With pure confluent inference,
this requires training an additional decoder to map directly from a fixed represent-
ation of the input to the desired (structured) output. With a transformational
component it consists of training a network to convert from a given fixed
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representation of the input problem to the given fixed representation for the output.
Portability refers to the ability of a representation to support inference tasks that are
introduced after representations have been formed (Lee et al., 1990).

Like confluent inference, FGREP has also been used to form representations that
are appropriate for given inference tasks (Miikkulainen & Dyer, 1989). However,
FGREDP and confluent inference are very different with respect to portability. When
a particular distinction is never used by any inference task, the FGREP method will
climinate that distinction from the representation (as does Hinton’s (1986) family
tree system). For example, because the words man, woman, boy, and girl are always
used in the same way in (Miikkulainen & Dyer 1990), the representations for each
of these words becomes identical. For this reason, Lee ez al. (1990) argue for the
development of task-independent representations, claiming that because distributed
semantic representations (DSRs) are learned independently of any particular task,
they are portable to tasks outside of the training environment.

Although confluent inference stands in opposition with Lee ez al. (1990) on the
idea of task-independent acquisition of representations, it is actually more similar to
DSRs than to FGREP with respect to portability. Because confluent inference
maintains enough information in its representations to complete the auto-association
task, the lack of a particular distinction by the given inference tasks does not result in
such information being thrown away in the representation. Nevertheless, more
opaque encodings will usually be obtained for distinctions that are not used within
any of the training tasks. When the sample of inference tasks used for training are
representative of other tasks that the system may later need to holistically compute,
then the important distinctions will become ‘well-entrenched’ (Goodman, 1983) and
the resulting representations should be quite portable over that set of tasks.

6.2. Interlingua

Confluent representations in the language translation experiments play the same role
as interlingua representations in the Machine Translation community. For this
particular task, there are a few minor differences. While interlingua has long been a
popular idea, the design of a sufficiently powerful intermediate language has been the
primary impediment to constructing effective interlingual translation systems
(Nirenburg, 1989). In contrast, confluent representations are not hand crafted, and
the important distinctions emerge automatically. Another difference is that conflu-
ent representations routinely capture semantic as well as syntactic features, while
according to Drozdek (1989), ‘the attitude implicitly present in the interlingual
method takes one to another extreme, i.e. to neglecting the syntax altogether and
focusing entirely on semantics’. Historically, the primary attraction of interlingua
for translation has been the reduction in the number of translators necessary for
going between » different languages. The motivations underlying confluent in-
ference are completely unrelated to this concern. However, perhaps the most blatant
difference is that the confluent representations are not absolutely constrained to be
identical for the same sentence in two different languages—confluence is an
emergent property that has been observed to occur empirically. The precise
representation for a sentence may vary by small amounts depending upon the source
language (Figure 6). These variations may correspond to small language-dependent
connotations that arise as a result of relationships in usage with respect to other
words or constructs in the language that cannot be easily captured in the other
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language. Examples of such phenomena may include certain puns, subtle ambigu-
ities, and many other variables of language perception such as those discussed in
Levelt (1978, pp. 21-47).

For tasks other than natural language translation, the analogy to interlingua
becomes more vague. As we consider variations (e.g. N-to-1 mappings (Chrisman,
1991)) on the inference task, it is hard to identify any relevant relationship between
confluence and interlingua.

7. Compeosite Approaches

As discussed earlier, confluence should be viewed primarily as a representation
forming mechanism. As such, it should complement transformational inference
rather than replace it. As discussed in the previous section, when some aspects of
the inference task are not likely to be readily summarized by high-level semantic
features, pure confluent inference may not be the most appropriate approach. In this
case, it may be easier to utilize transformational inference for some parts of the
inference task. Additionally, when an inference substantially alters the semantic
content within a problem, or when inferences are chained in a sequence of steps, then
a transformational component appears necessary. In this section, two possible
approaches are presented for obtaining a synergistic combination of transform-
ational and confluent inference.

In a composite architecture, an extra network g(-) is introduced to perform a
holistic transformation upon the distributed representations. The transformation
computes the distributed representation of f(x) from the distributed representation
of x. Recall that for pure confluent inference, D,(E,(x)) = f (x). When g(-) is inserted,
then D,(g(E,(x)))=f(x) and it is said that f(x) is computed by a combination
of confluent and transformational inference. Even in the composite case, the
auto-association pathways are still maintained, such that D,(E,(x))=x and
D(E(f(x))=£(x).

In the simplest composite architecture, confluent and transformational inference
are decoupled. Confluent inference is applied only during the early stages of training
while representations are initially being formed. During this stage, the distributed
representations of a problem and its answer tend to move together, and the ecventual
transformation task is biased towards simplicity. At some stage, confluent inference
is turned off, but by this time it will have exerted an influence over the eventual
representations that will be formed by the system, and the final transformation will
be simplified as a result.

When certain aspects of an inference task are ill-suited for confluent inference,
the mapping from x to f(x) would be expected to converge slowly during the
execution of the confluence training algorithm (given earlier in Section 4).
Therefore, a natural point to turn off confluent inference would be when the desired
auto-association accuracy is achieved, independent of inferential accuracy. At this
point, all necessary data structures can be represented by the system, but an
additional transformation may be necessary in order to accomplish the desired
inferential accuracy.

As with the dual-ported RAAM in Figure 4, while confluent inference is turned
on, the representation for a problem and its answer are treated as if they share the
same representation space as shown in Figure 7(a). However, after confluent
inference is turned off, the two representation spaces are treated as distinct as shown
schematically in Figure 7(b). Two different encoder-decoder pairs are still used.
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Figure 7. Decoupled composite architecture. (a) While confluent inference is on, the

representation spaces for a problem and its answers are shared. (b) After confluent

inference is turned off, the two representation spaces are treated as if they are
separate and distinct.
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Figure 8. Coupled composite architecture.

This simple decoupled scheme closely resembles the approach used for
transformational inference by Chalmers (1990) and Blank er al. (1992). The
difference is that confluent inference is harnessed early on in order to influence the
eventual representations.

The second approach for obtaining a composite architecture considers confluent
and transformational components simultaneously. The confluent mapping is learned
at the same time that the transformational mapping is learned, and both components
are active during the entire training process. The composite architecture is shown in
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Figure 8. The representation spaces for the problem and its answer are distinct
throughout the entire process, a feature that allows a different number of units to be
used in each representation space. The training of this configuration is similar to that
of the dual-ported RAAM except that the confluence of f(x) (step 5 in the confluence
training algorithm) is not enforced, and the second set of representation units are
treated as an extra hidden-layer by back-propagation during the confluence step
(step 4).

It should be evident that in both composite approaches, the inverse of a one-to-
one function is no longer automatically obtained as it was with pure confluent
inference. To obtain the inverse, a second transformation layer must be included in
the opposite direction in order to compute the inverse inference. The handling of this
second transformation is straightforward in both configurations.

8. Conclusions

There is widespread agreement that interesting intelligent behavior requires the
maintenance and manipulation of compositionally structured data. Classically,
structure-sensitive computation is performed via the explicit traversal and compo-
sition of constituent elements. However, the recent emergence of recursive
connectionist representations has created the possibility for a vastly different mode
of computation: holistic inference. By harnessing the emergent microstructure in
these distributed representations, holistic inference maps directly from the repres-
entation of a problem to the representation of its answer in a gestalt fashion, without
accessing the constituent elements or relations within the data. Besides being very
fast (usually constant time), there is also some hope that the associational abilities of
neural networks may result in additional benefits for employing holistic inference.

Transformational (structure-sensitive) holistic inference was introduced and
successfully demonstrated by Chalmers (1990). Because the representations are
learned independently from the inference task, pure transformational inference does
not tailor the representations for the inference task. A second form of holistic
inference, confluent inference, was introduced in order to achieve this capability.
Confluent inference accounts for the inference tasks during the formation of
representations by attempting to ‘bring together’ the representation of a problem
with the representation of its answer. The intended result is that the transform-
ational mapping (corresponding to the given inference) from problems to answers
becomes as simple as possible. A dual-ported extension to Pollack’s RAAM
architecture (Pollack, 1990) was devised, implemented, and used to test these ideas.
In a small English«»Spanish translation task, by using pure confluent inference the
system perfectly translated 89% of the testing sentences that were not in its training
set. The encouraging results indicate that confluence extends the feasibility of
holistic approaches for structure-sensitive computation. These experiments only
demonstrate the possibility of holistic techniques. The ultimate power and
feasibility will rest upon further development and improvement of reduced
description architectures (Hinton, 1990) and upon the harnessing of synergy
between confluent and transformational methods.

Acknowledgements

I am grateful to David Chalmers, Noel Sharkey and Dave Touretzky for helpful and
influential comments on early drafts of this paper. This research was sponsored by



364 Lonnie Chrisman

NASA under Contract NAGW-1175. The views and conclusions contained in this
article are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of NASA or the US government.

Notes

1. However, Nora Celis (personal communication, 1991) has obtained encouraging positive results using
RAAM-based transformational inference for English to Spanish translation.

2. As Figure 4 shows, the topology is similar to that of two different networks with topologies of 62-40-62
and 59-40-59 which share the hidden same hidden units. The @& notation summarizes this.

References

Allen, R. B. (1987) Several studies on natural language and back-propagation. In M. Caudill & C. Butler
(Eds), Proceedings of the IEEE First International Conference on Neural Networks, pp. 11-335-341. New
York: IEEE.

Blank, D. S., Meeden, L. A. & Marshall, ]. B. (1992) Exploring the symbolic/subsymbolic continuum: a
case study of RAAM. In J. Dinsmore (Ed.), The Symbolic and Connectionist Paradigms: Closing the Gap.
Hillsdale, NJ: Lawrence Erlbaum.

Chalmers, D. J. (1990) Syntactic transformations on distributed representations. Connection Science, 2,
53-62.

Chrisman, L. (1991) Learning recursive distributed representations for holistic computation. Technical
Report CMU-CS-91-154 (Carnegie Mellon University, Pittsburgh, PA). An earlier expanded version
of this paper.

Drozdek, A. (1989) Interlingua in machine translation. Proceedings of the 17th Annual ACM Computer
Science Conference, p. 434. New York: ACM Press.

Elman, J. L. (1990a) Finding structure in time. Cagnitive Science, 14, 179-212.

Elman, J. L. (1990b) Structured representations and connectionist models. In G. Altmann (Ed.),
Computational and Psycholinguistic Approaches to Speech Processing. New York: Academic Press.
Fodor, J. A. & Pylyshyn, Z. (1988) Connectionism and cognitive architecture: a critical analysis.

Cognition, 28, 3-71.

van Gelder, T. (1990) Compositionality: a connectionist variation on a classical theme. Cognitive Science,
14, 355-384.

Goodman, M. (1983) Fact, Fiction, and Forecast, 4th edn, Chap. II1. Boston, MA: Harvard University
Press.

Hinton, G. (1986) Learning distributed representations of concepts. Proceedings of the 8th Annual
Cognitive Science Sociery Conference, pp. 48-54. Hillsdale, NJ: Lawrence Erlbaum,

Hinton, G., McClelland, J. & Rumelhart, D. (1986) Distributed representations. In D. Rumelhart,
J. McClelland & the PDP Research Group (Eds), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Veol. I, Foundarions, Chap. 3, pp. 77-109. Cambridge, MA: MIT Press.

Hinton, G. E. (1990) Mapping part—-whole hierarchies into connectionist networks. Arzificial Intelligence,
46, 47-75.

Lee, G., Flowers, M. & Dyer, M. G, (1990). Learning distributed representations of conceptual
knowledge and their application to script-based story processing. Connection Science, 2, 313-345.
Levelt, W. J. M. (1978) A survey of studies in sentence perception: 9170-1976. In W. Levelt &

G. F. d’Arcais (Eds), Studies in the Perception of Language. New York: Wiley.

Miikkulainen, R. & Dyer, M. G. (1988) Forming global representations with extended backpropogation.
Proceedings of the IEEE Second Annual International Conference on Neural Networks, pp. 285-292, New
York: IEEE.

Miikkulainen, R. & Dyer, M. G. (1989) A modular neural network architecture for sequential
paraphrasing of script-based stories. Proceedings of the International Joint Conference on Neural
Nerworks, pp. 11-49-56. New York: IEEE.

Miikkulainen, R. & Dyer, M. G. (1990) Natural language processing with modular neural networks and
distributed lexicon. Technical Report CSD-900001 (UCLA Computer Science Dept.). Submitted to
Cognitive Science.

Nirenburg, S. (1989) Knowledge-based machine translation. Machine Translation, 4, 5-24.

Pollack, J. B. (1990) Recursive distributed representations. Artificial Intelligence, 46, 77 -105.

Pollack, J. B. (1991) The induction of dynamical recognizers. Machine Learning, 7, 227-252,



Holistic Representations 365

Servan-Schreiber, D., Cleeremans, A., & McClelland, J. L. (1988) Learning sequential structure in
simple recurrent networks. Technical Report CMU-CS-88-183 (Computer Science Department,
Carnegie Mellon University).

Sharkey, N. E. (1991) Connectionist representation techniques. A Review, 5, 143-167.

Smolensky, P. (1990) Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46, 159-216.

St John, M. F. & McClelland, J. L. (1990) Learning and applying contextual constraints in sentence
comprehension. Artificial Intelligence, 46, 217-257.

Touretzky, D. S. (1990) BoltzCONS: dynamic symbol structures in a connectionist network. Artificial
Intelligence, 46, 5—46.

Appendix A: Word Encodings

Tables Al and AII show the word encodings used during the natural language
translation experiments described in Section 5. The first group of bits encode word
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Table AIl The Spanish word encodings

Identity

Plurality

Category

0000
00000
00000
00000

1

1
1
1
1
0
0
0
0
o
a
0
Q

0 00

1
0
0

00 000O0O00

1
1
1
1
1
1
1
1
1

quiero

00 0000O0O0OTO 0

quiere

00 000O0O0CO 0

quieren

1

000
1

0
0

0000 O0O0O0OO0

0000

queremos
tengo
tiene

0000

0 0 000
0

0

0

0 0
00

0

0

1

0

00 00O0O0O0CDO

00

1
1
0
0
0
0

0 00O0O0O0O0CO

00 00O0O0O0OOD

tienen

00 00

1
1
1
1

00 01

1

tenemos
estay

esta

000
000
000
00 0

000

1

00 00O0O0O0O0

0000000
0000

0

0

0

00

1
1
1
1
1
1
0
0

estan

1

00 000O0CO0O0 e 00

estamos

soy

€5

0
0
0
0

0
Q
a
0

1
1
1
1

a0 0
000
000
000

000
1

0

1

000 O0O0O0OCO0OTU 0

0
0

1

0

00000

00 0
00 0 0

0

0000

s0n

000

a0 00O0O0O0O0

1
1

50mMos
Usted

000 100000
0
000 0O0O0

1
0000
00 00
00 00

1

00000 O0O0
0 000CO0O0O0

0 0 0

1

Lonnie

lo
de

001000O0O0O0

0 0 0

0

00 0000

00000
1

1

00 0000

1

0000

1

0 0

0

no

0 0000

0 0

1

1

Y}

1

0

g 0000 00 0

contento

100000

0

Q00001000

00000
000 00
00000
00000

0

CONtentos
furioso

00 00

1

1

0
0 0 0

0

0

1

0

00 0
00 0
00 0
000
0

1
1
1
1

00 00

1

furiosos

bien

0 00

1

1
1

0

aqui

0 0 0
0

0

0

0

001
1
1
1

0

0

joven

00001

1

0

1

0

1

0

0 00 0

0 0 0

00000
00000

jovenes
viejo

000001

Q

1

0

000001

1
1

0

000
1
1

1
1

00000

0

viejos

00000
00000

0
0
0
0
1
1
0
0
0

0 00
0

0

0

profesor

0
0

000000

profesores

¢ 000
0

1

0

000000

00O0O0CO0

estudiante

0 0

0

0

estudiantes

0
0

000O0O0O0O0
000 O0O0CO0O0
000O0O0OCO0I1
0000001
0000001
000 0O00

Pittsburgh

California

razoén

00000

1

0

1
1
1

1 0000
0

1

sueno

00 0
1

1

hambre
sed

0

0

0 0

0

1

1

0

0000001

dinero

category (i.e. verb, subject-noun, pronoun, preposition, adverb, determiner, adjec-
tive, simple-noun, or location). The middle group of bits encode a rough intuitive
notion of plurality. For verbs, these represent categories such as first-person-
singular or third-person-plural; for most nouns they encode simple plurality; and for

other words they are set arbitrarily. Finally, the last group selects the specific identity

of the word.



