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1 Overview

This supplement contains some of the detailed technical details of the proba-
bilistic model, algorithm, and experiments contained in the paper:

Lonnie Chrisman, Pat Langley, Stephen Bay, and Andrew Pohorille, “In-
corporating biological knowledge into evaluation of causal regulatory hy-
potheses,” Pacific Symposium on Biocomputing, 2003.

This document is not a stand-alone document — the original paper contains
motivations, descriptions, and related references. The information in the sup-
plement is provided for those who want to need the gory details.

2 Causal Structure

A causal model on a set of variables, x = {x3,..,x,} is defined by (M,0y),
where M is a causal structure and 8y is a collection of parameters for M. More
precisely, M is a set of directed links between pairs of variables, defining a
directed graph that we require to be acyclic. The parameters are used to define
a joint probability density over x, P(X|M,8,). We factor the joint density into
a product of local densities, such that

P(X|M76M) = HP(Xi|XpaTM(Xi)7M70M) (1)

i=1
Note that X4, (x;) denotes the joint assignment of values to all of the par-
ents of x;. The factorization in (1) is the standard factorization employed by



Bayesian networks, in which the full joint distribution is factored into local mod-
els specifying the density of each variable conditioned on its parents in M.

Within the space of possible Bayesian network representations, there are
many ways to define a set of parameters, 6, and to translate these into lo-
cal models, P(X;|Xpary, (x;)» M,00). A parameterization is a specific choice of
parameters and a specific way to translate these to a local conditional density.
Our PSB-2003 paper used one particular parameterization, which is spelled out
in detail in what follows.

2.1 Variable Values

We assume that each variable can take on one of three discrete values: + (up-
regulated), 0 (unchanged), and — (down-regulated). These values are inter-
preted to mean that the value for the variable changed (or was changed) in the
indicated fashion relative to a reference condition. In other words, the values
indicate a relationship between two situations, rather than an absolute value for
the variable in a single situation. We will call a particular comparison between
one particular situation and one particular reference situation a scenario. If we
reverse the roles of the two situations of a scenario, we get a new scenario, which
we term the reciprocal scenario. Whenever X; = + in the original scenario, we
will have X; = — in the reciprocal scenario, and vise versa.

A model (M,0)) is considered to be a walid depiction of an underlying
biological system over a certain scope of physiologic conditions, called the scope
of applicability of the model. A scenario is considered to be within the scope
of the model when both its situation and its reference situation are within the
scope of the model. It therefore follows that a whenever a scenario is within
the scope of a model, its reciprocal scenario is also within the scope of the
model. Based on this, we introduce the Aziom of Symmetry, requiring that
any predictions made by a model for a scenario must be consistent with the
predictions the same model makes for the reciprocol scenario. The Axiom of
Symmetry results in a substantial reduction in the free parameters.

2.2 Local Models

A basic problem with “non-parametric” local models is that the number of free
parameters required to represent P(X;|Xpqr,, (x;)> M,00) increases multiplica-
tively with the number of parents. When boolean variables are used, the noisy-
OR is often employed to avoid this pitfall. The noisy-OR is not directly applica-
ble in our situation, since we have 3-valued variables, but we can employ a gener-
alization of the noisy-OR, called a mizture model. Let paryr(x;) = {y1,-,¥m},



then the local model is given by

m
P(Xi=alY1 =b1,...Yim = by, M, 00) = wobx,=a + Z ;8 x,=a|v;=b;
j=1
s.t.
b; #0
(2)
When a parent variable does not change, i.e., Y; = 0, then we take it to have no
influence on the change of the child, hence the extra condition that b; # 0 in the
sum —i.e., we only mix in those parents that change. Implicit also is that we only
mix in those parents that are in M. The same 0x,—,y,—s;, parameter applies
to any model containing an edge from y; to x;, so that Equation (2) adapts to
any M as the algorithm explores the space of possible model structures. The
term in front of the sum adds in a basal or ambient source of uncertainty.
Although Equation (2) contains 7m+4 parameters,' the Axiom of Symmetry
and the requirement that certain parameters sum to 1 reduces this number of
parameters to 3m + 2 per node (or 3m + 2n all together, taken m to be the
number of plausible links, and n the number of variables). In particular, we
adopt these constraints:

m
ij =1

=0
> Oxmaymy, = 1
a€{+,0,-}
> fxima = 1
aE{+,0,7}
0Xi:a, = HXi:_a
Oxi=alv;=t; = Oxi=—av;=—;
where —a is the reciprocal value (e.g., when a = +, —a = —, etc. The latter

two constraints follow from the Axiom of Symmetry. These constraints mean
that we need only keep track of 0x,—y|y,—4, 0x,=|v;=b;, and an unnormalized
version of w; for each potential parent y;, and x,=4 and an unnormalized wo
for each node. All other parameters follow from the constraints.

2.3 Meta-Assessments

We do not assume that the parameters (w;, 0x;—a|v;—+, and 0x,—o) are known
or directly assessed by the end-user. Instead, the program uses Dirichlet con-

IThere are m + 1 mixture weight parameters, w;, three ambient noise parameters, 0x,;—q
for a € {+,0,—}, and 6m parent influence parameters, Ox;=a|v;=b for a € {+,0,—} and



stants, au;, Qx,—q|y;=+, and ax,=,- In most cases, the default Dirichlet con-
stants supplied by the program are used, but in some cases knowledge can be
represented by altering the Dirichlet parameters.

First, a quick review of the Dirichlet pdf is warranted before continuing. Let
01,..,0; be a set of parameters that sum to 1. A Dirichlet density over these
parameters, specified by the positive constants aq, .., qq, is given by

f(01, ..,91) = 71_[2:1 r (Oéz') il

when 2221 6; =1, f(-) = 0 otherwise.

For each group of parameters in our model that must sum to 1, we impose
a Dirichlet prior over the values of these parameters. Multiplying all these
Dirichlet priors together, we have a joint distribution P(6|a), which is the second
term in Equation (2) of the original paper. Note that this does not depend on
M.

The treatment of our w; parameters deserve some attention since the w;’s
used change as our algorithm explores different model structures. In the case
of w;, we actually have two levels of normalization. First, we have a Dirichlet
prior over the w;’s corresponding to all plausible incoming links to a node. It
is this Dirichlet density that we use for P(f|a). However, in Equation (2), we
normalize again over only those incoming links that are in M.



