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Abstract

Several theories of inference and decision employ sets of probability distributions as the

fundamental representation of (subjective) belief. This paper investigates a frequentist con-

nection between empirical data and convex sets of probability distributions. Building on

earlier work by Walley and Fine, a framework is advanced in which a sequence of random

outcomes can be described as being drawn from a convex set of distributions, rather than

just from a single distribution. The extra generality can be detected from observable char-

acteristics of the outcome sequence. The paper presents new asymptotic convergence results

paralleling the laws of large numbers in probability theory, and concludes with a comparison

between this approach and approaches based on prior subjective constraints.
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1 Introduction

This paper investigates the possibility of learning convex sets of probability distributions from

data. Several theories of inference and decision employ sets of probability distributions as the

fundamental representation of beliefs: in robust Statistics [1, 10], in relation to inner/outer

measures for representation of subjective beliefs [7, 20, 24], as more exible and general

measures of uncertainty [2, 4, 5, 6, 9, 15, 21, 23, 25]. Usually such sets of distributions

represent subjective opinions and preferences, and the indeterminacy of beliefs is epistemic.

Frequentist models depart from subjective interpretations and relate probability to ob-

servable phenomena, whereby an underlying probability reveals itself by way of asymptotic

relative frequencies. This paper examines an analogous connection between convex sets of

probability and observed outcome sequences. From an in�nitely long sequence of outcomes,

we attempt to recover the underlying convex set of distributions from which the data was

generated. Our asymptotic results parallel and generalize the laws of large numbers used in

probability theory. Existing literature does not provide an organized collection of asymptotic

results for convex sets of distributions. The �rst results of this kind were proposed by Walley

and Fine [27], and this paper can be understood as an adaptation of their results to more

practical scenarios. The goals of our paper are:

1. To provide background on the theory of convex sets of distributions and motivation

(Sections 2 and 3).

2. To describe a framework in which data can be viewed as being \generated" from an

underlying convex set of distributions (Section 4).

3. To clearly de�ne the notion of an estimator for convex sets of distributions (Section 5)

4. To describe Walley and Fine's estimator in an accessible fashion, and to improve upon

it (Section 6).

5. To present new classes of estimators with asymptotic convergence results (Section 7).

6. To compare this approach to approaches that learn sets of distributions with prior

subjective constraints (Section 8).

The paper presents novel asymptotic results (Section 7), which can be viewed as laws of

large numbers for convex sets of distributions. The results show that by examining a �nite

number of subsequences of the observed trials, it is possible to learn a set of distributions

that is guaranteed to dominate the set that generated the data. The theorems show how

any estimator, including Walley and Fine's estimator, can be improved upon; our estimators

lead to more realistic characteristics than Walley and Fine's estimator.
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2 Convex sets of distributions

We consider theories that use convex sets of distributions to represent beliefs and to evaluate

decisions. The set of distributions maintained by an agent is called the credal set [15]. To

simplify terminology, we use the term credal set only when it refers to a set of distributions

containing more than one element. Convex sets of conditional distributions are used to rep-

resent conditional beliefs. Inference is performed by applying Bayes rule to each distribution

in a prior credal set; the posterior credal set is the union of all posterior distributions.

Given a credal set K, a probability interval can be created for every event A by de�ning

lower and upper bounds, called the lower and upper envelopes:

p(A) = inf
p2K

p(A) p(A) = sup
p2K

p(A):

We say that a probability distribution p(�) dominates a lower envelope p(�) if p(A) � p(A)

for every event A.

We can also de�ne an expected utility interval for every utility function u(�):

E[u] = inf
p2K

Ep[u] E[u] = sup
p2K

Ep[u]

Since utility functions induce expected utility intervals, it may be the case that decisions are

incomparable (the ordering of possible decisions is a partial order) [15].

The upper envelopes and expectations can be obtained from the lower envelopes and

expectations respectively. We have p(A) = 1 � p(Ac) and E[u] = �E[�u] for any event A

and utility u(�).

Convex sets of distributions are interesting for several reasons, ranging frommathematical

elegance to practical considerations of robustness (for an extensive discussion of this topic,

consult Walley [25]). One of the common justi�cations is that assumptions of Bayesian

theory are too strict: how can a real agent be required to specify a single number when

explaining beliefs?

3 Interpretations of credal sets

Interpretations of probability often emphasize a frequentist approach, where probability is

(only) a limiting frequency ratio. Another view is subjectivist, where probabilities are degrees

of belief without necessarily having any physical manifestation.
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Most existing interpretations for credal sets fall squarely in the subjective regime (the

same holds for related systems such as belief functions, etc.). The fact that probabilities can

be directly related to observed frequencies gives probability a signi�cant advantage over other

subjective representations of belief. For example, as a result of this relationship, decision

analysts are often able to measure the calibration of an expert's subjective assessments

[16]. The lack of a similar connection to observable physical outcomes for credal sets is

a troublesome de�ciency for most existing theories. Only a few works have attempted to

make such connections, most notably the work of Kyburg [13, 14], which proposes speci�c

guidelines to transform �nite data knowledge into intervals of probabilities; the work of

Seidenfeld and Schervish [22] on the convergence properties of beliefs in a group of agents;

and the work of Walley and Fine [27] on estimators for sets of distributions.

Is it possible to relate a convex set of distributions to observable repeated outcomes in

a manner analogous to the relationship between probabilities and frequencies? Can credal

sets similarly be induced from a limiting series of observations in a meaningful fashion?

Results by Walley and Fine [27] prove that such a connection is indeed possible. In this

paper, we explain, build upon and extend these results, and we present interpretations of

the mathematical results that are both useful and understandable.

With these results, interpretations of credal sets can, like interpretations of probability,

have an additional grounding in observable phenomena, making notions such as calibration

meaningful even for credal sets.

4 Estimating a credal set

Our learning theorems (and Walley and Fine's theorems) are generalizations of various law

of large numbers theorems. Just as a probability can be induced from the frequencies on

an in�nite sequence of independent and identically distributed (i.i.d.) outcomes, our results

express the idea that a credal set can be induced from an in�nite sequence of outcomes. We

emphasize that the current theorems are only limiting results, with �nite sample cases being

deferred for future research.

We begin with some examples that highlight the subtleties of our task.

Example 1 Consider a coin where the bias is regulated by an extraneous mechanism, which

we call \nature". In a sequence of coin ips, the �rst, third, �fth, and successive odd ips

land heads with probability 0.6, while on the second, fourth, sixth, and successive even ips

land heads with probability 0.4.
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In this case, \nature" is choosing the bias of the coin from the probability interval

[0:4; 0; 6] in a deterministic fashion. An estimation task would be to recover this interval

from the in�nite series of ips.

Example 2 Consider a slightly di�erent sequence of coin ips. Suppose \nature" chooses

each distribution for each trial independently from a uniform distribution ranging from 0:4

to 0:6.

In this case, the trial outcomes are actually i.i.d., and a point probability 0:5 would

accurately describe the sequence. Thus, although one could say \nature" is drawing from

a credal set, in this example we have \nature" drawing samples from a single probability

distribution. We have constructed a hierarchical model for an i.i.d. point probability.

These examples illustrate that a credal set may or may not reveal itself through a sequence

of trials, even an in�nite one. Therefore, the goal to recover the underlying credal set precisely

would be ambiguous. We can still require no estimate to contain distributions that are not

in the underlying credal set. This establishes our �rst requirement: any estimate for a lower

envelope must dominate the lower envelope for the underlying credal set.

Examples 1 and 2 share an important characteristic. Suppose one measures the relative

frequency of heads as the number of coins goes to in�nity. In both cases the relative frequency

of heads approaches 0.5. The next example displays a situation where this does not occur.

Example 3 Suppose we observe a sequence of coins passing by on a conveyor belt. Each coin

is being placed heads-up with a probability between 1=3 and 2=3. In fact, it turns out \nature"

is picking these probabilities in a very regular fashion. For the ith coin, if the second most

signi�cant bit of i, when i is written in binary, is 0, the coin is heads with probability 1=3,

while if it is 1, the coin is heads with probability 2=3. For example, since 634 (= 1011110102)

has a zero for the second most signi�cant bit, the 634th ip is heads with probability 1=3.

Many people's initial intuition is that the relative frequency also approaches 0.5 in this

example (as \half" the coins have a bias of 1=3, the other \half" a bias of 2=3). However,

this sequence of coins does not have a unique converging relative frequency. Call the relative

frequency for heads at coin 2n by r0n. Then limn!1 r0n = 1=2 with probability 1. On the other

hand, call the relative frequency for heads at coin 2n + 2n�1 by r00n. Then limn!1 r00n = 4=9.

Depending on the way we generate subsequences of relative frequencies, we may get di�erent

converging relative frequencies. We conclude that a credal set may create in�nite sequences of

trials that cannot be represented by any probabilistic model (a single probability distribution

cannot generate a sequence with more than one converging relative frequency).
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We now formalize the concepts introduced by these examples. Section 4.1 discusses our

model for how a sequence is drawn from a credal set. The use of credal sets enriches the basic

notion(s) of statistical guarantees, and these generalized notions are discussed in Section 4.2.

Section 5 then considers our estimation goal, i.e., what it would mean to estimate that credal

set from a sequence of observations. Walley and Fine [27] constructed such an estimator; we

present their estimator and results in Section 6.

4.1 Data generation assumptions

Our data generation assumptions (taken from Walley and Fine) are as follows. For the

ith trial of the observed sequence, \nature" selects an underlying probability distribution,

�i. \Nature" may select a di�erent distribution for di�erent trials, i.e., it is possible that

�i 6= �j. The manner in which these trial distributions are selected is not known to us; it

may follow an (unknown) deterministic pattern (examples 1 and 3), there may be elements

of randomness involved (example 2), and/or they may depend on actual previous outcomes.

While no assumptions are made regarding how \nature" selects each trial distribution, we

do assume that every trial distribution is contained within a �xed credal set. Once \nature"

has selected a sequence of distributions, the individual trials are drawn independently and

randomly from their corresponding distributions (xi � �i).

One may interpret the credal set as the most basic model of uncertainty and the selected

distributions just as an explanatory device. A di�erent interpretation is that there is a

single distribution regulating the data, and this distribution is contained in the credal set

[17]. Then our assumptions can be framed as a relaxation of the usual i.i.d. assumption

for point probability. In this interpretation, while the trials are independent given the

trial distributions, the underlying trial distribution would not have identically distributed

marginals, and these marginals would need not be mutually independent.

One can see that our data generation assumptions are in fact appropriate for various

physical phenomena. For example, the bias on the rolls of a die may slowly vary or oscillate

by small amounts over time as the sides and corners become worn. It has been argued that

the actual physical behavior of atomic clocks exhibits a similar type of non-stationarity that

is most faithfully modeled by these assumptions [12, 8, 5].

Rather than view \nature" as actually drawing samples according to credal sets, the

subjectivist may view the data generation somewhat di�erently. There are variables whose

outcomes are to be assessed prior to observing the actual outcomes. However, due to lack of

time or other factors, the assessments are to be completed without elaborating a full detailed

model of the interactions or correlations between the variables. This interpretation of convex

sets of probability is referred to the ontological interpretation in previous research [3, 27]. As
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actual values for the variables become observed, it is as if the values have been drawn from

the perfectly calibrated subjectivist's belief set. In this way, inducing the underlying convex

set of probabilities from an in�nite observed sequence of data is equivalent to determining

whether an agent's subjective interval-valued belief is properly calibrated.

4.2 Asymptotic certainty and favorability

In classical probability theory, asymptotic certainty is at the core of central limit theorems.

For example, if a fair coin is ipped in�nitely often, the frequency of heads will approach

0.5 with asymptotic certainty. This leaves open the possibility that a very unusual sample

is generated by random chance, although as the length of the sequence grows, the chance of

usual events become less and less signi�cant.

Alternate versions of this type of limiting guarantee can be de�ned in the framework

of convex probability. The two concepts of primary interest are asymptotic certainty and

asymptotic favorability.

Let fA1; A2; : : :g be a sequence of events (an event here is a combination of outcomes that

either occurs or does not occur when the sequence is generated). When limn!1 p(An) �! 1,

it is said that A is asymptotically certain, or \a.c." In this case, no matter what strategy

\nature" uses to choose trial distributions, A will occur in the limit.

A weaker notion of convergence is also useful. When limn!1 p(Ac
n)=p(An) �! 0, where

Ac
n denotes the complement of An, it is said that A is asymptotically favored (a.f.) [27]. For a

point probability, asymptotic favorability and asymptotic certainty correspond. In general,

asymptotic certainty implies asymptotic favorability; a.f. is much weaker than a.c. In terms

of a credal set, asymptotic certainty of an event A means that, for all distributions p(�)
in the credal set, p(A) tends to 1; asymptotic favorability of an event A means that some

distributions in the credal set have p(A) tend to 1 and other distributions may have p(A)

tend to some non-negative number smaller than 1. Informally, asymptotic favorability only

ensures that it is plausible that A occurs with probability 1, but this occurs only if \nature"

happens to select trial distributions with the appropriate strategy (a \cooperative nature").

The concepts of a.c. and a.f. are most commonly applied to describe guarantees on sample

statistics or estimators, by saying that statistic F will have property A with asymptotic

certainty or favorability.
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5 The estimation task

A naive description for the estimation task would be to recover (learn) a.c. the underlying

credal set from an in�nite sequence of outcomes. As examples 1 and 2 show, an underlying

credal set does not necessarily reveal itself in any single in�nite sequence of trials. In simple

terms, this is just because our very loose assumptions about data generation have left totally

open the manner in which \nature" selects individual trial distributions. The deeper rami-

�cations of this are reected in a series of estimation results [27, Theorems 5.1-5.4], which

state that it is not possible to detect the full extent of the underlying credal set with asymp-

totic certainty, although it can be done with asymptotic favorability (i.e., if you happen to

be fortunate).

We keep the requirement that a good estimator must produce estimates which dominate

the lower envelope for the underlying credal set. This means that the estimated credal set is

smaller than the underlying credal set; our requirement is that the estimate does not contain

any distribution that is outside the credal set that generated the data.

Given two estimators that always dominate a credal set, which is best?

Even if an estimator asymptotically favors the underlying credal set and guarantees a

dominating credal set with asymptotic certainty, this does not mean it is the best possible

estimator. It is possible to have two di�erent estimators, both with these properties, produc-

ing distinct credal sets from the same sequence. Often these estimators will be incomparable

(in which case an even better estimator can be obtained using our Theorem 1). However,

it is also possible that the �rst estimator will always dominate the second (a.c.). If this is

the case, the second estimator, which is consistently dominated, is a better estimator. This

is because both are guaranteed the dominate the underlying distribution, but the second

estimator's resulting credal set will be larger, and therefore closer to the true underlying

credal set.

In fact, if data is generated by any non-vacuous credal set, K, it is possible to construct a

mathematically equivalent generator using any credal set dominated by K (i.e., larger than

K) with a simple alteration to the method for selecting the distributions. In so far as a

credal set (partially) summarizes the data generation process, one would always have the

option of reducing the information content of the summarization by loosening the bounds.

From all these equivalent generators, we are interested in the credal set conveying the most

informative description of the data generation process | i.e., the credal set that dominates

the others.

In short, our requirements are as follows. From an in�nite sequence of outcomes, we

desire an estimator that is guaranteed to dominate the underlying credal set with asymptotic
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certainty and contains as many distributions as possible.

6 Walley and Fine's estimation task

The estimation task that we have identi�ed in the previous section di�ers somewhat from

the estimation problem solved by Walley and Fine [27], although the assumptions behind

data generation are identical. The di�erence is subtle, but important for avoiding confusion

and fully understanding the results in this area. Although Walley and Fine's formulation

has a mathematical elegance in that it allows them to identify the optimal estimator (in

their sense), we believe the objective we have outlined is more representative of what one is

pragmatically interested in learning in the framework of convex sets of distributions.

From a sequence of outcomes, x1; x2; : : :, one can construct a sequence of relative fre-

quencies, r1(A); r2(A); : : :. Here rn(A) is the frequency of occurrences of event A during the

initial n trials of the sequence. Rather than estimating the credal set that generates the data,

Walley and Fine's characterize all possible subsequences of relative frequencies. For example,

suppose one considers only the subsequence of odd frequencies, r2; r3; r5; r7; r11; r13; r17; : : :,

and that this subsequence converges to a limiting frequency. Walley and Fine give estimators

that capture this limiting frequency with asymptotic certainty. Popper [18, Section 63-66]

calls these limiting frequencies "middle frequencies", and points out that sequences may have

multiple middle frequencies.

Note that example 3 involves exactly this type of construction. Walley and Fine empha-

size estimation with this type of sequence. On the other had, example 1 generates a sequence

with a single middle frequency and does not produce a credal set estimate with Walley and

Fine's approach.

One way to state the di�erence between our task and Walley and Fine's task is that we

are interested in limiting frequencies for subsequences of outcomes, while Walley and Fine

(and Popper) gave estimators for limiting points of subsequences of frequencies. The former

approach characterizes the sequence of outcomes, and relates directly to the underlying

credal set that generates the data, while the latter approach is a characterization of the

sequence of relative frequencies, and how the sequence of frequencies may not converge

in the classical sense. Walley and Fine's objectives can be pursued by throwing away all

information contained in the sequence of actual outcomes, keeping only the sequence of

frequencies.

It is not hard to see that an estimator for Walley and Fine's task is an estimator for

our task. However, for our task, a Walley and Fine estimator can often be substantially
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improved upon.

Walley and Fine propose the following estimator for lower envelopes. Consider a sequence

of trials fx1; x2; : : :g. For any event A, the relative frequency ri(A) is the number of positive

trials for A up to trial i. From the original sequence fx1; x2; : : :g, we can compute a sequence

of relative frequencies fr1(A); r2(A); : : :g.

Walley and Fine de�ne a class of estimators for the lower envelope having the following

form:

r(A) = lim inf
n!1

fri(A) : k(n) � i � ng; (1)

where k(n) is any function with the properties that limn!1 k(n) �!1 and limn!1(k(n)=n) =

0. For example, k(n) =
p
n yields one such estimator.

The lower envelope formed through Walley and Fine's estimator can be extended to a

convex set (the set of all distributions that dominate these estimates). Walley and Fine

prove that this set dominates the credal set that generated the data [27, Theorem 4.1]. The

dual upper envelope estimator is obtained by replacing the in�mum with a supremum in (1).

For many of us who are used to thinking about relative frequencies in terms of single

distributions and i.i.d. trials, the intuition behind Walley and Fine's estimator can be quite

diÆcult to grasp. For example, rk(n) and rn both converge to the relative frequency of

the in�nite sequence of trials, making it non-intuitive why looking at them together should

uncover more information about the mechanism generating the data than simply looking at

the common limiting relative frequency.

In fact, instead of looking at just the limiting relative frequency of an in�nite sequence,

Walley and Fine's estimator simultaneously considers the whole set of possible limiting

frequencies. If observations were being generated by an a single distribution through an

in�nite sequence of i.i.d. trials, each relative frequency in this set would converge (by the

law of large numbers) to the same limiting relative frequency, making rk(n) = rk(n)+1 =

: : : = ri�1 = ri, and making the in�mum in (1) uninteresting. When we drop the single

distribution and i.i.d. assumptions, the estimates become far richer.

Walley and Fine [27, Theorem 4.1(a)] prove that their estimator produces a credal set that

dominates the underlying credal set with asymptotic certainty. Their estimator will detect

divergence from i.i.d. point probability with asymptotic favorability (their Theorem 4.1(d)).

Also, any convergence subsequence of r1; r2; : converges to a frequency contained in their

estimate, and their estimate is the smallest credal set for which this is true (their Theo-

rem 4.1). Thus, in a certain sense, their estimator optimally characterizes the asymptotic

divergence of relative frequencies for a given sequence of outcomes.

The astute reader, however, will notice that Walley and Fine's estimator des not recover
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\nature's" exact credal set in this example in our previous examples. Since our goal is to

recover, as best we can, \nature's" underlying credal set, there is clearly room for improve-

ment. We now study Walley and Fine's estimator from a slightly di�erent perspective, which

helps clarify our own approach to the problem.

The above interpretation of Walley and Fine's estimator built an analogy between the

estimator and the minimum of a sequence of estimates, frk(n); : : : ; rng. This is a translation
of expression (1) and serves the purpose of clarifying the logic behind the estimator.

Walley and Fine's estimator can also be described as the minimum estimate produced

by a generator of sub-sequences; this is the description that interests us in this paper.

Consider an in�nite sequence of trials X = fx1; x2; : : :g. Consider a generator of selection
rules, i.e., an algorithm that generates in�nite sub-sequences Xs out of the sequence X, by

specifying members of X that must also be members of Xs. Take the following algorithm,

which generates subsequences for a given n:

� For all k from k(n) to n, produce the sub-sequence Xk = fx1 : : : xkg.

Each sub-sequence Xk has its relative frequency. Suppose now that n ! 1. If the

original sequence X has multiple converging frequencies, these frequencies must be attained

in some of the sub-sequences and their minimum will be captured by Walley and Fine's

estimator. The way to produce multiple converging frequencies was illustrated in the coin

example: progressively \longer in�nite" numbers of trials must be used to generate each one

of the frequencies.

This procedure reveals the drawback of Walley and Fine's approach. The problem is

that their estimator is geared toward capturing all possible limiting frequencies, regardless

of the types of sequences it may �nd. Rarely a sequence of data will be maliciously produced

as in the coin example, with progressively \longer in�nite" segments generated by di�erent

probabilities. In general we expect trials to be generated by selecting distributions from the

credal set in some de�ned, deterministic way, and then generating the data from the selected

distributions. This is the most relevant situation in practice, where we are interested to assess

how much our assumptions of randomness, and our abstractions in the modeling process,

are justi�ed.

The main goal of this paper is to develop estimators that are suited to deal with the

situation described above. Suppose that we have some deterministic procedure selecting

distributions. First suppose, for the sake of argument, that we know the deterministic

procedure. For example, odd trials obey one distribution, even trials obey another. Then

the logical way to proceed is to partition the data into even and odd sub-sequences and
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estimate relative frequencies in each one of them. This agrees with intuition and with

statistical practice: if we suspect di�erences between blocks of data, we must run some form

of cross-validation among the inferences obtained from di�erent blocks.

Now suppose the distribution selection mechanism is unknown. We still proceed the same

way, by partitioning the data into several sub-sequences, in the hope of matching the data

patterns. If we take the lower bounds of the collections of relative frequencies that emerge,

we obtain estimators that can capture aspects of the data that are not captured by Walley

and Fine's estimator. The learning theorem proved in the next section demonstrates that

this procedure in fact creates credal sets that dominate the \true" credal set with asymptotic

certainty. We also indicate how to combine our procedure with Walley and Fine's estimator

so as to improve both estimators.

7 The �nite learning theorem for convex sets of distri-

butions

We create a family of estimators whose main purpose is to capture aspects of a sequence of

trials that cannot be captured by Walley and Fine's estimator. Consider an in�nite sequence

of trials X = fx1; x2; : : :g. Each trial for event A is generated with a distribution p(A) such

that p(A) > p(A). Consider a sub-sequence Xs out of the sequence X. We assume that

the probability of any trial is una�ected by the selection mechanism: p(xi 2 Ajxi 2 Xs) =

p(xi 2 A). We must place restrictions on the possible sub-sequence selection rules, because

we cannot select trials \after we see" the results. Otherwise it would be possible to construct

a sub-sequence with only heads or only tails in the coin example. We must be able to specify

sub-sequences in some de�nite way which cannot a�ect nor be a�ected by the trials. The

de�nition of a sub-sequence generator that complies with such requirements can be taken

from the theory of random numbers, where selection rules are studied to great length. We

adopt the de�nitions of computable selection rules given by Knuth [11] to indicate which

entities we consider. We assume that sub-sequences are de�ned such that there are in�nitely

many elements in each sub-sequence for an in�nitely long original sequence.

To prove the main theorem, we need the following result from Walley and Fine [27,

Lemma3.2 summarized]:

Lemma 1 Suppose p(�) is a lower envelope in a space with a �nite number of elements, and

we choose a collection of events Ajn for n � 1 and 1 � j � J, such that the events Ajn are

a.c. as n!1. Then the �nite intersection \jAjn is a.c. as n!1.
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Since the Lemma fails for countably in�nite collections of events, we cannot extend our main

theorem to countably in�nite collections of events with the same tools used in this proof.

Whether this can be done with other techniques is an open problem.

Now we can prove:

Theorem 1 (Finite Convex Learning Theorem) For a given algorithm s as speci�ed

above, de�ne:

rsn(A) =
jfi : 1 � i � n; xsi 2 Agj

ns
:

where ns is the number of elements in s up to trial n. Let S be a �nite set of algorithms s;

de�ne

rSn(A) = min
s2S

rsn(A);

then rSn(�) dominates a.c. (as n ! 1) the lower envelope that generated the original se-

quence.

Proof.

Call p(�) the lower envelope that generated the data. The conjugate upper envelope is

p(�).

First, rSn(�) is a lower envelope: the lower envelope of rsn(�) for all s 2 S. Now, take each

algorithm sj from S. Each sj de�nes an in�nite sequence of trials with probability larger

than p(A) for each event A. Now apply Theorem 4.1.a from Walley and Fine [27] on each

sub-sequence:

8� > 0;
\
A2A

[p(A) + � > rsjn (A) > p(A)� �] a.c. as n!1 under p1(�):

In other words, for large enough n, the value of rn(A) will (almost always) be within p(A)

and p(A). So the event frsjn (A) almost within p(A) and p(A)g is a.c.

Now due to Lemma 1, we know that as n!1, the event

8<
:
\
sj2S

rsjn (A) almost within p(A) and p(A)

9=
;

is a.c.; so the event (
min
sj2S

rsjn (A) almost within p(A) and p(A)

)
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is a.c.. 2

This result suggests that, given a �nite space of events and a sequence of trials, it is

possible to �nd estimates for the lower envelope of the distributions.

A drawback of the estimator rSn(�) is that it may not capture all limits of pointwise

convergent sub-sequences of relative frequencies. The following result indicates how to solve

this problem.

Theorem 2 The estimator de�ned by rS
0

n (A) = min(rSn(A); rn(A)), where rSn(A) is de�ned

in the previous theorem, and rn(A) is Walley and Fine's estimator, dominates a.c. (as

n ! 1) the lower envelope that generated the original sequence and contains the lower

envelope of all limits of pointwise convergent sub-sequences of relative frequencies.

So far the discussion has concentrated on the estimation of lower envelopes. A lower

envelope corresponds to an in�nite number of convex sets of distributions, so statements

about estimation of convex sets are stronger than statements about lower envelopes. To be

able to attack this problem, we note that there is a one-to-one correspondence between credal

sets and lower expectations [25]. If we can estimate lower expectations, we can recover the

underlying (unique) convex set of distributions. Walley and Fine also approach this problem

and prove that for a measurable utility function u(�):

8� > 0;

"
E[u] + � >

Pn
i=1 u(xi)

n
> E[u]� �

#
a.c. as n!1 under p1(�):

We can use this result and adapt our Theorem 1 to obtain:

Theorem 3 For a given algorithm s as speci�ed above, de�ne:

Es
n[u] =

Pn
i=1 u(xi)

ns
;

the sample average of u(x) in the sub-sequence s. Let S be a �nite set of algorithms s; de�ne

ES
n[u] = min

s2S
Es
n[u];

then for all � > 0 the event
n
E[u] + � > ES

n [u] > ES
n[u]� �

o
is a.c. (as n!1).
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8 Comparison with subjective learning of convex sets

of distributions

This paper concentrates on the connection between data and convex sets of distributions.

Results do not use the possible existence of prior distribution for events. An alternative

approach is to use prior distributions and Bayes rule to obtain posterior measures for events.

The objective of this paper is not to replace Bayes rule, but rather to enhance one's intu-

ition about probabilities constructed solely from data. There has been work on subjective

approaches to the process of learning convex sets of distributions; we mention two approaches

that are relevant to Bayesian networks.

8.1 Ramoni and Sebastiani approach to missing data

The estimation of parameters for a Bayesian network usually has to deal with missing data,

i.e., observations for some variables are not collected. The standard Bayesian assumption

is that missing data happens at random; if this assumption is violated, inferences may be

biased. Ramoni and Sebastiani propose to lift the \missing at random assumption" [19]

in a Bayesian network learning scenario. They consider all possible ways in which missing

data could have happened, and create a convex set of joint distributions that represent the

gamut of possibilities for the data actually collected. The idea is to avoid using unjusti�ed

assumptions and replacing those by sets of distributions, so that the e�ects of missing data

can be evaluated.

8.2 Walley's imprecise Dirichlet prior

The imprecise Dirichlet prior has been proposed by Walley [26] as a model for inferences

associated with multinomial sampling. Here we indicate how this model can be used to learn

Bayesian networks associated with convex sets of distributions.

An imprecise Dirichlet distribution for a vector valued variable � is:

p(�) = Dir(�js; t) �
j�jY
i=2

�sti�1i ;

where s is a real number larger than zero and t is a vector where
P
ti = 1 and 0 < ti < 1

for all ti.

14



This class of distributions can be used as a prior credal set; the prior assumptions are

much less restrictive than standard Bayesian assumptions. Note that for any event A, the

prior imprecise Dirichlet model induces the bounds p(A) = 0 and p(A) = 1.

First consider standard Bayesian network learning when complete data is available. A

Bayesian network codi�es a joint distribution through the expression:

p(~x) =
Y
i

p(xijpa(xi));

where pa(xi) are the parents of variable xi. For each variable, the vector of parameters

�i contains elements �ijk = p(xi = kjpa(xi) = j), where �ij1 = 1 �
Pjxij

k=2 �ijk. The vector

�ij = f�ijkgjxijk=1 contains the relevant parameters for the distribution p(xijpa(xi) = j). The

vector � = f�1; : : : ; �ng contains all parameters to be estimated. The usual assumption for

the prior p(�) is parameter independence:

p(�) =
nY
i=1

pa(xi)Y
j=1

p(�ij):

Finally, the prior distributions for each vector �ij are assumed to come from an imprecise

Dirichlet family. The posterior is then an imprecise Dirichlet distribution with parameters

that depend on the prior parameters and the data.

Suppose that every vector �ij is associated with an imprecise Dirichlet prior:

p(�ij) = Dir(�ijjsij; tij) �
jxijY
k=2

�
sijtijk�1
ijk ;

where sij is a real number larger than zero and tij is a vector such that
P
tijk = 1 and

0 < tijk < 1 for all tijk. We assume that the convex set of prior joint distributions is

obtained by taking the convex hull of all prior marginals de�ned by imprecise Dirichlet

distributions.

Suppose data nij observations are made with pa(xi) = j and nijk observations are made

with xi = k, pa(xi) = j.

The posterior distribution for �ij is given by imprecise Dirichlet distributions, due to the

parameter independence assumption and the convexi�cation convention. We have �ij with

marginals:

p(�ij = Dir(�ijjs0ij; t0ij);

where s0ij = nij + sij and t0ijk =
nijk+sijtijk
nij+sij

.
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9 Conclusion

This paper advances a frequentist framework based on convex sets of probability distribu-

tions. From a sequence of outcomes generated by repetitive experiments, we are able to

learn meaningful convex sets of probability distributions from the data. This learning is

accomplished using estimators that examine relative frequencies over a �nite collection of

subsequences of the data. The estimators are guaranteed in a strong sense (i.e., with asymp-

totic certainty) to dominate the convex set of distributions that generated the data. Our

theorems also demonstrate that any estimator based on a �nite collection of subsequences

can always be improved.

The work started by Walley and Fine and extended in this paper opens several important

doors for advocates of belief representations based on convex sets of distributions. First, it

demonstrates that these representations can actually be learned from observed data. Sec-

ond, and perhaps most importantly, is that the connection to observed outcomes addresses

what has been a critical weakness of these convex set representations. Bayesians have had

the philosophical upper hand primarily because of the connection between probability and

observed frequency. Among other things, this connection implies that it is possible to de-

tect when a Bayesian degree of belief is or is not properly calibrated. No such notion has

previously been possible for convex set representations of belief. We now know that the

connection of subjective probability to observed frequencies is not exclusive property of the

Bayesian interpretation, but can indeed be enjoyed by belief frameworks based on credal sets

as well.
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